
Reinventing the
Wheel @
WheelNext
Summit

Emma Smith, NVIDIA

March 21, 2025

PEP 777: Reinventing the Wheel

Credit: Graeme Tozer on Flickr

Anti-goals:
- Break ecosystem with each

new feature
- Change outer container

from zip archive
- Reduce human readability of

filename
- Require custom parsing of

file contents

PEP 777: Reinventing the Wheel

● Wheel Specification (PEP 427) is over a decade old
● Wheel usage has changed significantly

○ e.g. much more common to ship libraries in wheels
● Wheel format needs to change:

○ METADATA difficult to parse correctly
○ Wheel versioning makes it difficult to adopt features individually
○ No ability to support alternative compression formats
○ Wheel metadata in the filename inhibits flexibility

● How can we change the wheel format without “breaking the world” for each feature?

Evolve the wheel format

Current issues with wheel evolution

● Every change bumps the wheel major version - which breaks installation of
those wheels on older installers

● No clear resolution for users - will upgrading help?
● Wheel version unavailable to resolvers until downloaded
● Wheel filename rigid and impossible to extend due to optional tag in the

middle of the filename

{distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl

How to evolve wheels
● Wheel features enable individual adoption and

integration of improvements
● Increase wheel version visibility to resolvers by

serving WHEEL
● Try to break users only once

○ Change the wheel filename/major version
with wheel 2.0, then

○ Enforce installers to ignore incompatible
wheel files

● Make wheel metadata extensible
○ Move “source of truth” from file name to

WHEEL metadata file
○ Serve WHEEL just like METADATA
○ Change filename to include hash of

WHEEL, keeping {name}-{version} prefix

PEP 777: Reinventing the wheel
Open questions
● Is it better to break users every change

if they can tell new wheels are
available?

● Should we delay publication to reduce
number of users broken if we don’t
ignore incompatible wheels by
default?

● How can we emphasize disruptions if
wheel updates do “break the world”?

● How best to signal new wheels that are
incompatible exist to users?

PEP 778: Symlinks

● Background
○ Libraries on Linux have a particular naming scheme:

libfoo.so
libfoo.so.2
libfoo.so.2.3.1

○ Only libfoo.so.2.3.1 is a file - the other two are symbolic (soft) links to that file
● A number of projects now distribute shared libraries in their wheels for users to link against

at runtime and build time
○ Apache Arrow
○ CUDA
○ PyTorch

● The zip format, and thus wheels, do not support symlinks

PEP 778: Symlinks

● An example of wheel format evolution
● LINKS file describes symlinks to be created by installer
● Narrowing focus to only Unix and libraries

○ Symlinks could be used to support editable installs (PEP 660), but that is left to
another PEP

○ Portability of symlinks is complicated
■ On Windows, symlinks require developer mode or Administrator permissions
■ Windows has hard links, but they are different

● Security model very important
○ Shouldn’t be able to symlink outside of site directory
○ Shouldn’t be able to symlink into another package’s contents, unless under a shared

namespace
● Should probably leave door open to other link types?

Thank you for your attention

