Z/2

Reinventing the

Wheel @ Emma Smith, NVIDIA
WheelNext March 21, 2025
Summit

AN

O @/

PEP 777: Reinventing the Wheel

Anti-goals:

Break ecosystem with each
new feature

Change outer container
from zip archive

Reduce human readability of
filename

Require custom parsing of
file contents

Credit: Graeme Tozer on Flickr

PEP 777: Reinventing the Wheel

® Wheel Specification (PEP 427) is over a decade old
® Wheel usage has changed significantly
o e.g. much more common to ship libraries in wheels
® Wheel format needs to change:
o METADATA difficult to parse correctly
o Wheel versioning makes it difficult to adopt features individually
o No ability to support alternative compression formats
o Wheel metadata in the filename inhibits flexibility
® How can we change the wheel format without “breaking the world” for each feature?

Evolve the wheel format

Current issues with wheel evolution

{distribution}-{version}(-)?2-{python tag}-{abi tag}-{platform tag}.whi

e Every change bumps the wheel major version - which breaks installation of
those wheels on older installers

e No clear resolution for users - will upgrading help?

Wheel version unavailable to resolvers until downloaded

e Wheel filename rigid and impossible to extend due to optional tag in the
middle of the filename

How to evolve wheels

Wheel features enable individual adoption and
integration of improvements
Increase wheel version visibility to resolvers by
serving WHEEL
Try to break users only once
o Change the wheel filename/major version
with wheel 2.0, then
o Enforce installers to ignore incompatible
wheel files
Make wheel metadata extensible
o Move “source of truth” from file name to
WHEEL metadata file
o Serve WHEEL just like METADATA
o Change filename to include hash of
WHEEL, keeping {name}-{version} prefix

PEP 777: Reinventing the wheel

Open questions

Is it better to break users every change
if they can tell new wheels are
available?

Should we delay publication to reduce
number of users broken if we don't
ignore incompatible wheels by
default?

How can we emphasize disruptions if
wheel updates do “break the world"?

How best to signal new wheels that are
incompatible exist to users?

Proportion of downloads by pip major version

PEP 778: Symlinks

® Background
o Libraries on Linux have a particular naming scheme:

libfoo.so
libfoo.so.2
libfoo.s0.2.3.1
o Only libfoo.s0.2.3.1is a file - the other two are symbolic (soft) links to that file
® A number of projects now distribute shared libraries in their wheels for users to link against O

at runtime and build time
o Apache Arrow
o CUDA
o PyTorch
® The zip format, and thus wheels, do not support symlinks

PEP 778: Symlinks

® An example of wheel format evolution
® LINKS file describes symlinks to be created by installer

® Narrowing focus to only Unix and libraries
o Symlinks could be used to support editable installs (PEP 660), but that is left to
another PEP
o Portability of symlinks is complicated
m On Windows, symlinks require developer mode or Administrator permissions O
m Windows has hard links, but they are different
® Security model very important
o Shouldn’t be able to symlink outside of site directory
o Shouldn’t be able to symlink into another package’s contents, unless under a shared
namespace

® Should probably leave door open to other link types?

Thank you for your attention

